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Alzheimer’s disease is preceded by a lengthy ‘preclinical’ stage spanning many years, during which subtle brain changes occur in the

absence of overt cognitive symptoms. Predicting when the onset of disease symptoms will occur is an unsolved challenge in

individuals with sporadic Alzheimer’s disease. In individuals with autosomal dominant genetic Alzheimer’s disease, the age of

symptom onset is similar across generations, allowing the prediction of individual onset times with some accuracy. We extend this

concept to persons with a parental history of sporadic Alzheimer’s disease to test whether an individual’s symptom onset age can

be informed by the onset age of their affected parent, and whether this estimated onset age can be predicted using only MRI.

Structural and functional MRIs were acquired from 255 ageing cognitively healthy subjects with a parental history of sporadic

Alzheimer’s disease from the PREVENT-AD cohort. Years to estimated symptom onset was calculated as participant age minus age

of parental symptom onset. Grey matter volume was extracted from T1-weighted images and whole-brain resting state functional

connectivity was evaluated using degree count. Both modalities were summarized using a 444-region cortical-subcortical atlas. The

entire sample was divided into training (n = 138) and testing (n = 68) sets. Within the training set, individuals closer to or beyond

their parent’s symptom onset demonstrated reduced grey matter volume and altered functional connectivity, specifically in regions

known to be vulnerable in Alzheimer’s disease. Machine learning was used to identify a weighted set of imaging features trained to

predict years to estimated symptom onset. This feature set alone significantly predicted years to estimated symptom onset in the

unseen testing data. This model, using only neuroimaging features, significantly outperformed a similar model instead trained with

cognitive, genetic, imaging and demographic features used in a traditional clinical setting. We next tested if these brain properties

could be generalized to predict time to clinical progression in a subgroup of 26 individuals from the Alzheimer’s Disease

Neuroimaging Initiative, who eventually converted either to mild cognitive impairment or to Alzheimer’s dementia. The feature

set trained on years to estimated symptom onset in the PREVENT-AD predicted variance in time to clinical conversion in this

separate longitudinal dataset. Adjusting for participant age did not impact any of the results. These findings demonstrate that years

to estimated symptom onset or similar measures can be predicted from brain features and may help estimate presymptomatic

disease progression in at-risk individuals.
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Introduction
Alzheimer’s disease is characterized by a lengthy preclinical

period involving progressive changes in brain structure and

function that precede overt cognitive symptoms (Jack et al.,

2013; Sperling et al., 2014; Iturria-Medina et al., 2016).

These brain alterations are subtle but measurable, allowing

researchers to use neuroimaging to identify individuals at

risk for Alzheimer’s dementia well before cognitive symp-

toms manifest (Mathotaarachchi et al., 2017). Few studies

have examined how neuroimaging features can predict the

timing of symptom onset in preclinical individuals (Oulhaj

et al., 2009; Jack et al., 2010; Bateman et al., 2012; Zhang

and Shen, 2012; Ten Kate et al., 2017). This is an import-

ant topic of research, considering the preclinical period of

Alzheimer’s disease can last decades (Villemagne et al.,

2013), and yet clinical trials typically only last a few

years. The ability to predict symptom onset timing could

increase the power of such trials by enriching for individ-

uals on the precipice of their symptom onset. As yet, there

is no consensus on biomarkers that can accurately reflect

the temporality of preclinical disease progression, and no

studies exist that have used a prediction/validation study

design to establish generalizability of such markers.

A small proportion (51%) of dementia due to

Alzheimer’s disease is attributable to autosomal dominant

genetic mutations for which a single copy of a pathogenic

allele is sufficient to cause symptoms (Mendez, 2013). In

such cases, the age at symptom onset is similar within and

across generations (Ryman et al., 2014). By comparing a

mutation carrier’s chronological age with his/her family’s

typical age of symptom onset (age of the person minus

the age of familial onset), one can estimate the number of

years to symptom onset (Bateman et al., 2012). The study

of disease characteristics related to years to estimated

symptom onset has revealed a sequence of Alzheimer’s dis-

ease biomarkers that become increasingly abnormal as

predisposed individuals approach their expected onset

timing (Bateman et al., 2012). This pattern has been

observed using markers specific to Alzheimer’s disease

pathology, as well as using MRI data representing struc-

tural and functional properties of the brain (Chhatwal

et al., 2012; Benzinger et al., 2013).

Most Alzheimer’s disease cases are not caused by a

single gene mutation and are often referred to as sporadic

Alzheimer’s disease. Despite the characterization of this ill-

ness as ‘sporadic’, it is known from both parent–offspring

and twin studies to be strongly heritable (H estimated

at 50–70%) (Gatz et al., 2006). Importantly, age of symptom

onset has also been shown to be heritable in

sporadic Alzheimer’s disease (Li et al., 2002; Dickson et al.,

2008; Kamboh et al., 2012; Wingo et al., 2012; Naj et al.,

2014). It is unknown whether a measure similar to the esti-

mated onset age calculation might serve in sporadic

Alzheimer’s disease to indicate advancement of

presymptomatic disease. We investigated this topic in asymp-

tomatic subjects with a parental history of sporadic

Alzheimer’s disease. We took the parent’s age of dementia

onset as a broad indicator of the age at which such an indi-

vidual’s symptoms might appear, and used this information

to calculate each individual’s years to estimated symptom

onset in the context of sporadic Alzheimer’s disease.

Individuals with Alzheimer’s disease express a consistent

pattern of neurodegeneration that can be detected early on

in the disease progression (Buckner et al., 2005; Dickerson

et al., 2011). Several lines of evidence also suggest that

Alzheimer’s disease alters resting state functional MRI con-

nectivity (Sheline et al., 2010; Mormino et al., 2012; Brier

et al., 2014). We hypothesized that individuals approaching

their parent’s onset age would express more severe struc-

tural and functional alterations in these Alzheimer’s dis-

ease-specific regions. To establish the generalizability of

these findings, we assessed whether imaging features asso-

ciated with our construct of years to estimated symptom
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onset could predict years to estimated symptom onset in

unseen test data from the same dataset. Finally, we general-

ized the years to estimated symptom onset construct by

testing whether the same imaging features could predict

the actual timing of conversion events (either to mild cog-

nitive impairment or to dementia) in a well characterized

longitudinal dataset.

Materials and methods

Participants

We studied 255 cognitively intact individuals aged 55 or older

assembled for PResymptomatic EValuation of Experimental of

Novel Treatment of Alzheimer’s disease (PREVENT-AD).
Enrolment criteria can be found elsewhere (Breitner et al.,
2016). All participants had a Clinical Dementia Rating

(Perneczky et al., 2006) of 0, and had at least one parent
diagnosed clinically with sporadic Alzheimer’s disease or a

condition suggesting Alzheimer’s-like dementia (Tschanz
et al., 2013). We estimated parental onset age as the age at

which there was unambiguous evidence of cognitive impair-

ment, as reported by the participant and occasionally corrobo-
rated by medical records. We then estimated years till parental

symptom onset as the age of the participant minus the onset
age of the earliest affected parent (Bateman et al., 2012). All

participants were fully briefed and gave their explicit consent

for participation using procedures and consent forms approved
by the Institutional Review Board of the McGill University

Faculty of Medicine. Demographic information for this

sample can be found in Table 1.
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is

an open-source public dataset designed to accelerate the dis-

covery of imaging markers for Alzheimer’s disease progression

and clinical trials. General information about ADNI, as well as
specificities of ADNI diagnostic criteria, can be found on the

ADNI website (http://adni.loni.usc.edu/methods/documents).

One hundred and eighty-eight ADNI subjects with full struc-
tural MRI and resting state functional MRI data were identi-

fied, 149 of whom passed data quality control procedures (see
below). From this group, we identified 26 ‘converters’. These

were individuals who were cognitively normal at baseline but

later received a diagnosis of mild cognitive impairment, or
those who had mild cognitive impairment at baseline but sub-

sequently developed dementia. Time to conversion was calcu-
lated as the number of days between the baseline visit and the

date of the session where the subjects were first reported as

having converted. This measure was then centred around time
of clinical conversion onset to correspond to the scale of

estimated symptom onset in the PREVENT-AD (e.g. �3 rep-
resents 3 years to clinical conversion). Subjects who had mild

cognitive impairment at baseline but converted back to a status

of cognitively normal were excluded. Along with the magnetic
resonance images, we also downloaded demographic informa-

tion, Montreal Cognitive Assessment (Nasreddine et al., 2005)

scores, APOE4 carriage information and hippocampal volume.
Table 2 contains demographic variables for the ADNI

converters.

MRI acquisition

MRI acquisition procedures for the PREVENT-AD have been
documented elsewhere (Orban et al., 2015). Briefly, MRI data
were acquired using a 3 T Magnetom Tim Trio (Siemens)
scanner. For structural scans, T1-weighted images were ob-
tained using a GRE sequence with the following parameters:
repetition time = 2300 ms; echo time = 2.98 ms; flip angle = 9�;
matrix size = 256 � 256; voxel size = 1 � 1 � 1 mm3; 176
slices. For resting state functional MRI scans, two consecutive
functional T2*-weighted scans were collected with a blood
oxygenation level-dependent (BOLD) sensitive, single-shot
echo planar sequence with the following parameters: repetition
time = 2000 ms; volumes = 150; echo time = 30 ms; flip
angle = 90�; matrix size = 64 � 64; voxel size = 4 � 4 mm3;
32 slices. ADNI acquisition procedures have previously been
described in detail (Jack et al., 2008).

APOE genotyping

Automated DNA extraction was applied for buffy coat samples
using the QiaSymphony DNA mini kit (Qiagen). APOE4 geno-
type was determined with the help of the PyroMark Q96
pyrosequencer (Qiagen) using the following primers: rs4293
58_amplification_forward 50-ACGGCTGTCCAAGGAGCT G-30,
rs429358_amplification_reverse_biotinylated 50-CACCTCGCCGC
GGTACTG-30, rs429358_sequencing 50-CGGACATGGAGG
ACG-30, rs7412_amplification_forward 50-CTCCGCGATGCCG
ATGAC-30, rs7412_amplification_reverse_biotinylated 50-CCCC
GGCCTGGTACACTG-30 and rs7412_sequencing 50-CGATGA
CCTGCAGAAG-30. Participants were binarized as APOE4 car-
riers or non-carriers.

Cognitive scores

As part of the PREVENT-AD battery, all participants were
assessed using the Montreal Cognitive Assessment Scale and
underwent full cognitive testing using the Repeatable Battery
for the Assessment of Neuropsychological Status (Gold et al.,
1999). Z-scores of these cognitive tests were aggregated into

Table 1 Demographic information for the PREVENT-

AD cohort

Training

set

Testing

set

Total

n 138 68 206

Age (SD) 62.9 (4.8) 62.2 (5.3) 62.7 (4.9)

% Female 73.5 79.4 74.8

Montreal Cognitive

Assessment Score (SD)

28.0 (1.5) 28.2 (1.5) 28.2 (1.5)

Total intracranial

volume (SD)

1.40 (0.18) 1.37 (0.11) 1.40 (0.17)

Frame Displacement

(SD)

0.22 (0.05) 0.21 (0.05) 0.21 (0.05)

Parental symptom

onset (SD)

74.1 (8.1) 73.5 (8.1) 73.9 (8.09)

Years to estimated

symptom onset (SD)

�11.1 (8.1) �11.3 (7.7) �11.2 (8.0)

SD = standard deviation.

Years to estimated symptom onset was calculated by subtracting the parental symptom

onset age from the participant age.
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five cognitive composite scores as per recommendations
of the battery: Immediate Memory, Attention, Visuospatial
Construction, Language and Delayed Memory.

Functional preprocessing

PREVENT-AD and ADNI functional data were preprocessed
using the NeuroImaging Analysis Kit version 0.12.17, using
GNU Octave version 3.6.1 and the minc-toolkit version
0.3.18. Detailed preprocessing and quality control procedures
have been documented elsewhere (Orban et al., 2015). Briefly,
for each subject, functional images underwent slice-timing cor-
rection, and parameters for rigid realignment were estimated
between each run, and between the mean and the T1 image. T1

images underwent non-linear structural normalization to the
MNI-ICBM152 stereotaxic symmetric template using CIVET
(Redolfi et al., 2015). Parameters of the previous transform-
ations were applied to each functional MRI run to bring them
into MNI space and resample them to 3 mm isotropic. Slow
time drifts, average white matter and CSF signal, and motion
artefacts (first six principal components of the six realignment
parameters, and their squares) were regressed from the func-
tional MRI time series. Framewise displacement was calculated
to assess functional timeframes with excessive motion (Power
et al., 2012). All time frames exhibiting frame displacement
40.5 were removed (scrubbed), along with one adjacent
frame prior, and two consecutive frames after. Subjects with
570 non-scrubbed frames were considered to have failed qual-
ity control and were excluded from analysis. Overall, seven
PREVENT-AD subjects had unavailable resting state func-
tional MRI scans, and 42 subjects failed quality control pro-
cedures and were removed, leaving 206 for analysis. Similarly,
39 ADNI subjects failed quality control procedures and were
excluded, leaving 149 in total (26 converters).

To prepare our data for feature selection, we attempted to
strike a balance between biological resolution and dimension-
ality. We therefore used a freely available medium-high
resolution cortical parcellation with 444 regions of interest
(Urchs et al., 2017) to summarize the resting state functional
MRI data further. One region of interest was removed due to
spatial inconsistency. Mean BOLD activity was calculated
within each of the 443 regions of interest at each timeframe
for each subject. These data were transformed into 443 � 443
correlation matrix where the timeseries at each brain region
was correlated with that of every other brain region, and this
matrix underwent Fisher’s Z transformation. For PREVENT-
AD, the connectivity values were averaged across the two
functional MRI runs.

Functional brain connectivity was summarized using degree
count, a graph theory metric representing whole-brain

high-confidence connection density per region (Bullmore and
Sporns, 2009; Power et al., 2011, 2013). This metric was
chosen because it effectively reduces the dimensions of the func-
tional connectivity data, but also because this sparsity better
represents the properties of real-world graphs (Power et al.,
2013). Appropriate calculation of degree count requires a
sparse matrix, and so a threshold was applied to each subject’s
connectivity matrix, and connections were binarized such that
those exceeding the threshold were set to 1 (Bullmore and
Sporns, 2009). Degree count for each subject was calculated as
the sum of binarized connections between each brain region and
every other brain region. The end result is one general feature
per region, which indicates its level of connectivity with the
rest of the brain. Altogether, 443 resting state functional
MRI connectivity features were therefore available for each
PREVENT-AD and ADNI subject. Degree count for each subject
was obtained at several thresholds (90%, 92%, 94%, 95%,
96%, 98%) (Power et al., 2013), and a final threshold was
chosen through cross-validation (see below).

Structural image processing

We used identical processing procedures for PREVENT-AD
and ADNI subjects. Each participant’s T1-weighted image
was segmented into grey matter, white matter and CSF using
Statistical Parametric Mapping 12 v.6225, running on
MATLAB version 2012a. Total intracranial volume was cal-
culated by adding together the values for all three segmenta-
tion volumes. The DARTEL toolbox (Ashburner, 2007) was
used to create a subject-specific template (separately for
PREVENT-AD and ADNI cohorts), to which all scans were
non-linearly normalized. The template then underwent non-
linear registration with modulation for linear and non-linear
deformations to the MNI-ICBM152 template, and the param-
eters were applied to each subject’s T1 image to move it into
template space. Each image underwent visual quality control
after segmentation and after non-linear transformation.
Template space grey matter probability (c1) maps were
smoothed with an 8 mm3 isotropic Gaussian kernel, creating
grey matter volume images, which were masked with a max-
imum probability grey matter mask generated from the group-
average image. To be consistent with resting state functional
MRI analyses, grey matter volume was summarized by aver-
aging volume within each of the 443 regions of interest from
the parcellation applied to the resting state functional MRI
data, and total intracranial volume was included as an inde-
pendent feature (Schwarz et al., 2016). Therefore, grey matter
volume and connectivity features were available for each sub-
ject, for a total of 887 features. Subjects with unavailable
resting state functional MRI features (due to exclusion) were
removed from analysis leaving a total of 206 subjects. For
purposes of comparison, single measures summarizing hippo-
campal volume were acquired for all subjects in native space
using a previously described approach (Coupé et al., 2011).

Statistical analysis

Data were analysed using a training, validation, testing, and gen-
eralizing approach with a feature selection routine and nested
cross-validation to attain a linear model with improved general-
izability (Tavor et al., 2016; Youssofzadeh et al., 2017). We used
Least Absolute Shrinkage and Selection Operator (Lasso)

Table 2 Demographic characteristics of the ADNI

converters

n 26

Age (SD) 72.8 (6.4)

% Female 48.1

% Mild cognitive impairment 77.8

Montreal Cognitive Assessment Score (SD) 23.2 (2.9)

Years to conversion (SD) 1.83 (1.24)
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regression using functional connectivity and grey matter volume

to predict years to estimated symptom onset in the PREVENT-
AD cohort.

First, PREVENT-AD subjects were split such that two-thirds
were used as a training set (n = 138) and one-third was

kept completely separate as a naı̈ve testing set (n = 68).

The PREVENT-AD training set was used to select and validate

a model through nested cross-validation, which was then
applied to the PREVENT-AD testing data. The training and

testing sets were balanced so that no significant difference

in years to estimated symptom onset or any demographic
variable was observable between the two groups (Table 1).

ConnectivityVolume

Train/Validate

Test

Train
k

Validate
k

Three-fold split of training set

Feature reduction: 

keep only features

correlated P < 0.05 with spEYO

Enter features into 

Lasso Regression

Ten-fold split of Train
k

Train
l

Validate
l

Identification of optimal penalization

function through cross-validation

Apply Lasso weights to Validate
k
 features

to calculate predicted spEYO for Validate
kEstablish validation accuracy

Average weights over all folds  

 and apply to test data

Establish testing accuracy 

on unseen test data

A

B

C

Figure 1 Nested cross-validation pipeline for Lasso Regression-based model optimization. (A) Grey matter volume and whole-

brain resting state functional connectivity features were summarized using a 443-region cortical atlas (plus total intracranial volume), for a total of 887

brain features. One-third of the sample (n = 68) was removed from the pipeline and reserved as unseen testing data (presented in C). The other two-

thirds (n = 138) was entered into the nested cross-validation loop presented in B. (B) The training set (only) underwent 3-fold cross-validation. For

each fold, two-thirds of the sample was extracted and imaging features were filtered such that only those significantly related to years to estimated

symptom onset (P5 0.05 uncorrected) were retained. These features were entered into a Lasso Regression, which itself used 10-fold cross-

validation to define the optimal penalization. The betas (weights) from the Lasso Regression model were applied to the left-out third of the training

set to transform them into a single vector of predicted years to estimated symptom onset values. The predicted vectors for each of the n = 3 folds

were appended together so predicted values were present for all subjects within the training set. Validation accuracy is reported as the r2 of the

relationship between predicted years to estimated symptom onset and observed years to estimated symptom onset. (C) Finally, the Lasso Regression

weights for all three folds were averaged, and these weights were applied to the unseen test data to generate predicted years to estimated symptom

onset in the test dataset. Final accuracy is reported as the r2 of the relationship between predicted years to estimated symptom onset and observed

years to estimated symptom onset in the test dataset. spEYO = years to estimated symptom onset (sporadic Alzheimer’s disease).
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For exploratory purposes, in the training sample only, grey
matter volume features significantly related to years to esti-
mated symptom onset are reported, adjusting for age, sex
and total intracranial volume, and connectivity features signifi-
cantly related to years to estimated symptom onset are
reported adjusting for age, sex and mean framewise displace-
ment. We examined qualitative relationships between the re-
gions related to years to estimated symptom onset in the
PREVENT AD cohort, and regions commonly compromised
in Alzheimer’s disease. For resting state functional MRI, we
compared the results to a meta-analysis map downloaded from
Neurosynth using the term ‘Alzheimer’s disease’ (211 studies)
with forward inference and a false discovery rate cut-off of
Q = 0.01 (Yarkoni et al., 2011; Ashar et al., 2016). For struc-
tural features, we compared regions related to years to esti-
mated symptom onset to regions found to be significantly
reduced in ADNI normal controls compared to Alzheimer’s
disease patients, using a t-test [P(corrected)50.05]. Finally, uni-
variate associations between years to estimated symptom onset
and several demographic, cognitive and imaging measures are
reported, calculated using correlations and t-tests.

Our predictive model was defined through a 3-fold nested
cross-validation (Fig. 1). Within each fold, models were se-
lected as follows: (i) features were reduced based on having
a correlation with years to estimated symptom onset (P50.05
uncorrected; Emerson et al., 2017); and (ii) these features were
normalized to 0 mean and 1 standard deviation (SD) and
entered into a Lasso Regression, which used 10-fold cross-val-
idation to tune the penalization parameter. The weights and
intercept produced by each model were stored, and were used
to predict years to estimated symptom onset for the left-out
subjects for the given fold. The predicted values from each fold
were appended together, and validation accuracy was calcu-
lated as the r2 between observed years to estimated symptom
onset and predicted years to estimated symptom onset from
the 3-fold cross-validated Lasso Regression (Fig. 1). Models
were trained over each connectivity density threshold (see
above), with and without the (P50.05) feature reduction
step. Validation accuracy was used to determine that the fea-
tures selection step should be included, and that the 98%
threshold was the best link density threshold for the creation
of functional connectivity features. Confidence intervals for
this analysis were determined using 10-fold repeated cross-val-
idation (Supplementary Fig. 1). The nested k-fold predictive
model was trained once more with the 98% threshold with
features selection for each fold, and a single consensus model
was generated averaging the weights across all three folds.
This model was applied to the features of the unseen testing
sample (normalized to the training sample) by taking the dot
product between the individual feature vector and the vector of
model weights, plus the model intercept, to predict years to
estimated symptom onset in this test group. Testing accuracy
was calculated as the r2 between observed years to estimated
symptom onset and predicted years to estimated symptom
onset. Confidence intervals (CI, 95%) for the prediction r2

values were obtained for the test sample using bootstrapping
(1000 samples with replacement).

To test the generalizability of this model further, weights
determined in the PREVENT-AD cohort were applied to nor-
malized baseline connectivity and grey matter volume features
of off-site data from the ADNI cohort. The model trained on
time to estimated symptom onset in the PREVENT-AD was

used to predict time to conversion in ADNI subjects who even-

tually converted to mild cognitive impairment or dementia. We

standardized the model features within (all 149) ADNI pa-
tients, and calculated predicted years to symptom onset

values for each ADNI individual as the dot product between

the individual ADNI feature vector and the vector of weights

from the PREVENT-AD model, plus the model intercept. Note
that, because of standardization within ADNI, we are effect-

ively using the pattern of expression from the PREVENT-AD

model to predict time to progression in ADNI. We report the
r2 between the predicted and observed values, representing the

degree to which pattern expression of the model predicts years

to clinical progression. Due to the small sample size, the P-
value for this analysis was calculated using permutation testing

(10 000 samples without replacement). For the purposes of

comparison, we also report the effect sizes of other cognitive

and biomarker data on years to clinical conversion.
All statistics were performed using the numpy, scipy and scikit-

learn (Pedregosa et al., 2012) packages of Python version 3.5.2.

Controlling for age

Given its strong association with both years to estimated

symptom onset and imaging features, age represents an im-

portant potential confound to this analysis. To ensure the fea-
ture weights identified in the previous analysis were not simply

an imaging proxy for age, we performed two separate ana-

lyses. First, previous analyses predicting years to estimated

symptom onset in PREVENT-AD and time to conversion in
ADNI were adjusted for age. Second, age, sex and either total

intracranial volume (grey matter volume) or mean framewise

displacement (connectivity) were regressed out of the imaging
features in the training and test set before defining the optimal

model weights with Lasso Regression. Predictive analyses were

then rerun with the new weights.

Comparing predictive value of
imaging features to other clinical
markers

Traditionally, many cognitive, demographic and simple ima-

ging metrics have been used for diagnostic and prognostic
purposes in the clinic. To put our results into perspective,

we trained a new model using only typical demographic and

clinical markers (Model 2): age, sex, education, APOE4 car-
riage, left and right hippocampal volume, total intracranial

volume, Montreal Cognitive Assessment scores, and five cog-

nitive composite scores. Since few of these features were asso-
ciated with years to estimated symptom onset in the training

sample, all features were forced into the model (i.e. the feature

preselection step was skipped). Additionally, we trained a third

model (Model 3), which combined the imaging features from
the original model (Model 1) with all of the features from

Model 2, the features from Model 2 being once again forced

into the model. The r2 of these models are reported with con-
fidence intervals established through bootstrapping. The three

models were compared directly using bootstrap testing (1000

simulations with replacement).
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Results

Associations between years to esti-
mated symptom onset and model
features

Table 3 lists univariate associations between years to esti-

mated symptom onset and several demographic, cognitive

and imaging metrics in the training sample of PREVENT-

AD. Older subjects tended to be closer to or beyond their

estimated symptom onset, while APOE4 carriers tended to

be further from their estimated symptom onset. In ADNI,

subjects with worse Montreal Cognitive Assessment scores

converted marginally sooner.

After adjustment for age, sex and total intracranial

volume, associations between grey matter volume and

years to estimated symptom onset emerged in a specific

cortical pattern within the training sample of the

PREVENT-AD cohort (Fig. 2). Individuals closer to or

beyond their parents’ age of symptom onset showed

reduced grey matter volume in medial parietal and

medial frontal cortex, as well as the medial temporal

lobe, thalamus, cerebellum and some scattered aspects of

lateral temporal, frontal and parietal cortices. Brain re-

gions with significantly reduced grey matter volume asso-

ciated with years to estimated symptom onset also

resembled regions with reduced grey matter volume in

ADNI Alzheimer’s disease dementia patients compared to

controls (Supplementary Fig. 2). Years to estimated symp-

tom onset was not associated with increased grey matter

volume in any brain region. In contrast to grey matter

volume, both positive and negative relationships emerged

between years to estimated symptom and whole-brain

resting state functional MRI connectivity, adjusting

for age, sex and mean frame displacement (Fig. 2).

Negative relationships were observed in certain regions

participating in the default mode and frontoparietal

networks, and positive relationships emerged mainly in

the subcortex, medial temporal lobes and frontal

cortex. Brain regions with significantly altered functional

connectivity related to years to estimated symptom

onset also resembled regions with disrupted functional con-

nectivity in Alzheimer’s disease based on a meta-analysis

(Supplementary Fig. 2).

Imaging features predict years to
estimated symptom onset

Lasso Regression embedded in a nested cross-validation

pipeline (Fig. 1) identified a set of weighted imaging

features designed to predict years to estimated symptom

onset (Fig. 3A). Grey matter volume features included the

posterior cingulate most prominently, but also included

aspects of the lateral temporoparietal cortex and pre-

frontal cortex. Functional connectivity features selected

included bidirectional effects across default mode, salience

and limbic networks. In all, 64 features—17 grey matter

volume and 47 functional connectivity features—were

selected (beta40), and together achieved high predict-

ive power in the PREVENT-AD validation sample

[r2(138) = 0.256 (95% CI: 0.18, 0.36), P50.0001]. The

weighted feature set was then applied to unseen

PREVENT-AD test data, and significantly predicted a siz-

able portion of variance in years to estimated symptom

onset in this sample [r2(68) = 0.221 (95% CI: 0.077,

0.392), P5 0.0001; Fig. 3B].

Table 3 Univariate associations between measures of disease progression and traditional demographic, cognitive

and imaging measures

PREVENT-ADa ADNIb

Variable Beta (SE) r P Beta (SE) r Pc

Age 0.51 (0.14) 0.30 50.001 �0.01 (0.04) �0.06 0.77

Education 0.15 (0.18) 0.07 0.41 �0.08 (0.11) �0.15 0.45

Intracranial volume 1.79 (4.99) 0.03 0.72 0.00 (0.00) 0.13 0.53

Montreal Cognitive Assessment �0.13 (0.05) �0.02 0.78 0.14 (0.08) 0.33 0.098

Immediate Memory �0.03 (0.05) �0.04 0.60 – – –

Visuospatial Construction �0.03 (0.04) �0.05 0.54 – – –

Language �0.03 (0.07) �0.04 0.65 – – –

Attention �0.06 (0.05) �0.11 0.22 – – –

Delayed Memory �0.03 (0.06) �0.05 0.58 – – –

Hippocampal volume �0.002 (0.002) �0.08 0.33 0.00 (0.00) 0.17 0.40

Variable t P t Pc

Sex – 0.29 0.77 – 0.29 0.77

APOE4 carrier – �2.13 0.03 – 0.15 0.88

aStatistics represent associations between each measure and years to estimated symptom onset in the PREVENT-AD cohort.
bStatistics represent associations between each measure and time to clinical progression in ADNI.
cP-values established through permutation testing because of small sample size.
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resting-state funtional MRI structural MRI

0-0.5 0.5

beta

A

B C

r2 = 0.221
P < 0.0001

r2 = 0.153
P = 0.049

PREVENT- AD ADNI

Figure 3 Neuroimaging features predict years to estimated symptom onset and time to clinical conversion. (A) Neuroimaging

features included in the final predictive model developed in the PREVENT-AD validation group (i.e. brain region with non-zero beta values) are

projected onto cortical surfaces. Whole brain resting state functional connectivity features are presented on the left, while grey matter volume

features are on the right. Colours represent the direction and magnitude of beta values. Warmer colours indicate higher positive betas, while cool

colours represent lower betas. Higher absolute beta values (brighter colours) indicate increased contribution of the feature in the model. Note that

model weights may not accurately represent univariate relationships between predictors and years to estimated symptom onset. (B) The predictive

model derived from the PREVENT-AD training set significantly predicted years to estimated symptom onset in an independent PREVENT-AD testing

set. (C) The model derived from the PREVENT-AD training set was generalized to cognitively normal and mild cognitive impairment individuals

followed over time from the ADNI cohort. The more the ADNI individuals expressed the pattern predicting years to estimated symptom onset, the

closer they were to clinical conversion. The pattern expression was normalized with a mean centre and unit variance of patients from the ADNI

cohort. Due to the small sample size, the P-value is estimated using permutation testing (1000 samples without replacement).

resting-state functional MRI structural MRI

-1.98 1.98-3.36 3.36

t

P
0.050.001 0.0010.05

Figure 2 Relationships between brain imaging features and years to estimated symptom onset. Relationships between years to

estimated symptom onset and resting state functional connectivity (left) and grey matter volume (right) features, after adjusting for age, sex and

mean frame displacement (connectivity) or total intracranial volume (volume) in the PREVENT-AD training sample. Positive relationships are shown

in warm colours, while negative relationships are shown in cool colours. Only significant relationships are visualized (P5 0.05 uncorrected).
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Imaging features predict years to
clinical conversion in a separate pro-
spective sample

None of the PREVENT-AD subjects who were used to

train the predictive model expressed symptomatic

Alzheimer’s disease, and the symptom onset was therefore

estimated but not known. To validate our estimate, and to

establish the generalizability of the model, we applied the

model to imaging features of 26 cognitively normal and

mild cognitive impairment subjects from an independent

dataset, with full resting state functional MRI and struc-

tural MRI data, who eventually converted to mild cognitive

impairment or dementia, respectively. The model trained on

years to estimated symptom onset significantly predicted

years to clinical conversion in this group [r2(26) = 0.153

(95% CI: 0.024, 0.360), P = 0.049; Fig. 3C]. This associ-

ation remained significant when only including subjects

with mild cognitive impairment [r2(21) = 0.201 (95% CI:

0.028, 0.516), P = 0.040]. Specifically, subjects predicted to

be closer to or beyond their expected symptom onset

tended to convert sooner. This indicates that the model

trained to predict years to estimated symptom onset in

the PREVENT-AD cohort provides meaningful information

to predict actual time to clinical conversion in a subgroup

of patients from the ADNI cohort. Therefore, the model

may represent a general model of individual progression

towards dementia.

Imaging features predict years to
estimated symptom onset indepen-
dently of age

As both imaging features and years to estimated symptom

onset are associated with age, a strong relationship between

age and the predictive features identified in the previous ana-

lysis was expected. This association was indeed present in the

PREVENT-AD testing sample [r2(68) = 0.140, P = 0.0018]

and the group of ADNI converters [r2(26) = 0.178,

P = 0.029]. Two analyses were undertaken to assess whether

the predictive quality of our model was driven by age,

summarized in Supplementary Table 1. First, our model

significantly predicted years to estimated symptom onset in

PREVENT-AD and years to clinical conversion in ADNI,

even when adjusting for age. Additionally, new predictive

models and feature sets were generated adjusting for age

and sex. These models once again significantly predicted

years to estimated symptom onset in the PREVENT-AD

and years to clinical conversion in ADNI. Effect sizes of

these results varied in PREVENT-AD, but not in ADNI.

Multi-modal imaging features
improve predictive models using
traditional measures

We next compared our model using only multimodal neu-

roimaging features to a model composed of features used in

a traditional clinical setting (Fig. 4). A new model (‘Model

2’) was trained to predict years to estimated symptom onset

in the PREVENT-AD cohort using only traditional demo-

graphic, cognitive and imaging measures. This model also

predicted years to estimated symptom onset in the unseen

test data [r2 = 0.093 (95% CI: 1.87, 17.34), P = 0.012]. This

model however performed worse (P = 0.034) than the model

using only neuroimaging features (Model 1), explaining less

than half the variance. Finally, a third model (Model 3) was

trained combining features from both Models 1 and 2,

which again predicted years to estimated symptom onset

in unseen data [r2 = 0.29 (95% CI: 0.13, 0.47),

P5 0.0001]. Model 3 outperformed Model 2 (P = 0.004),

but not Model 1 (P = 0.24). This suggests that adding multi-

modal high resolution neuroimaging information to models

using only traditional markers significantly enhances predic-

tion of preclinical disease progression.

Discussion
In a sample of cognitively unimpaired older individuals with

a parental history of Alzheimer’s disease-like dementia, we

evaluated the construct of estimated years to onset of spor-

adic Alzheimer’s disease. Calculating this metric as the differ-

ence between a given participant’s current age and the onset

age of his/her earliest affected parent (Bateman et al., 2012),

Figure 4 Head-to-head comparison of three different

models trained to predict years to estimated symptom

onset. Each model was evaluated on unseen PREVENT-AD

test data. Bars represent explained variance (r2
� 100) of each of

the three models. 95% confidence intervals were generated

through bootstrapping, and bootstrap tests were used to make

empirical comparisons between models. Adding neuroimaging

features to traditional clinical markers significantly improved the

predictive power of the model. Imaging features alone performed

significantly better than traditional clinical features alone. n.s. = not

significant.
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we first identified its relationship to alterations in resting state

functional MRI and volumetric structural MRI in a portion

of the participant sample. We then used a machine learning-

based regression technique (Lasso regression) to construct a

model in this training sample that successfully predicted esti-

mated years to onset in a previously unseen portion of the

same dataset. Finally, we cross-validated this measure by test-

ing the capacity of the resulting model to predict time to

diagnostic progression (conversion to mild cognitive impair-

ment or dementia) in ADNI.

Characterization and evaluation of the presymptomatic

stage of Alzheimer’s disease is necessary for the development

of preventive interventions. The study of presymptomatic

sporadic Alzheimer’s disease is challenging because, in the

absence of symptoms, one cannot be certain whether or

when a given individual will develop dementia. Our study

identified regionally specific reductions in grey matter

volume and altered connectivity as key features that corre-

lated with years to estimated symptom onset. These findings

were reminiscent of observations in mutation carriers from

families harbouring autosomal dominant Alzheimer’s disease

(Bateman et al., 2012; Chhatwal et al., 2012; Benzinger

et al., 2013). Our study further shows that a single model

based on neuroimaging data can predict both an estimate of

time to symptom onset in asymptomatic individuals, and

actual time to symptom onset in individuals that progressed

to mild cognitive impairment and/or Alzheimer’s disease de-

mentia, greater than chance. These results suggest that the

years to estimated symptom onset measurement contains

useful clinical information that may help predict degree

and temporal progression of preclinical brain changes in

sporadic Alzheimer’s disease.

Associations between years to estimated symptom onset

and brain function and structure were found in Alzheimer’s

disease-vulnerable regions. Associations with grey matter

volume were found predominantly in the medial temporal

lobe and in regions within the default mode network. These

regions are characteristically compromised in Alzheimer’s

disease, even in its preclinical stages (Buckner et al.,

2005; Dickerson et al., 2011; Grothe and Teipel, 2016),

and resembled grey matter differences between healthy

older controls and Alzheimer’s disease patients in ADNI.

Furthermore, individuals approaching or exceeding their

parental symptom onset showed reduced connectivity

between certain frontoparietal or default mode network re-

gions and the rest of the brain. By contrast, we observed

increased connectivity between medial temporal lobe or sa-

lience network regions and the rest of the brain. Abnormal

connectivity in these networks has been noted previously by

others (Greicius et al., 2004; Sheline et al., 2010; Chhatwal

et al., 2012; Badhwar et al., 2017), and the pattern of al-

terations resembled that of a meta-analysis of resting state

functional connectivity disruptions in Alzheimer’s disease

(Supplementary Fig. 1). The association between years to

estimated symptom onset and hippocampal hyperconnectiv-

ity is interesting in view of growing evidence that increased

hippocampal activity is a prominent feature of preclinical

Alzheimer’s disease (O’Brien et al., 2010; Bakker et al.,

2012; Mormino et al., 2012; Leal et al., 2017), possibly

representing a compensatory reaction to deficits elsewhere.

Our work builds on a growing body of literature suggest-

ing that, despite its simplicity, the years to estimated symp-

tom onset measure may contain important information

with respect to preclinical trajectories. Accumulation of

amyloid-b in the cerebral cortex is an early and specific

marker of Alzheimer’s disease, and years to estimated

symptom onset has been associated with abnormality in

amyloid biomarkers across three cohorts of individuals

with a family history of Alzheimer’s disease, including the

present sample (Villeneuve et al., 2018). Similarly, years to

estimated symptom onset has been associated with decline

in cognition in another, similar cohort (Ritchie et al.,

2017). In the current study we show that MRI abnormal-

ities are not only associated with, but can predict years to

estimated symptom onset in asymptomatic individuals. We

further showed that these same imaging features can pre-

dict time to clinical progression in an independent cohort of

individuals with Alzheimer’s disease. While there may be

other brain alterations dynamically associated with clinical

progression, at least some of the regions identified in our

predictive model appear to be stable across the spectrum of

Alzheimer’s disease.

The last decade has witnessed substantial progress to-

wards prediction of progression to Alzheimer’s disease.

Several studies have used neuroimaging data to achieve con-

siderable accuracy toward identifying individuals who will

develop dementia within a few years (Mathotaarachchi

et al., 2017). Predicting time to symptom onset in sporadic

Alzheimer’s disease is a much more complex task, and con-

siderably less work has been published on this topic (Oulhaj

et al., 2009; Jack et al., 2010; Zhang and Shen, 2012; Ten

Kate et al., 2017). At this stage, the performance of our

model remains far from the accuracy necessary for clinical

utility. Nonetheless, its ability to predict 420% of the

variance in years to estimated symptom onset using only

neuroimaging data suggests substantial utility for research

of preclinical Alzheimer’s disease. While we show that trad-

itional clinical markers can provide reliable information

with respect to preclinical disease trajectories, we also

provide strong evidence that such models are substantially

improved by adding multi-modal neuroimaging measure-

ments, which provide independent relevant information.

In contrast with previous studies (Jack et al., 2010; Ten

Kate et al., 2017), we did not find relationships between

whole hippocampus volume and years to estimated symp-

tom onset or years to clinical conversion, and hippocampal

volume was not selected as a feature in our predictive

models. We note that the sample sizes of clinical progres-

sors in these previous studies are four to five times larger

than the sample of ADNI progressors in the current study,

and were therefore better powered to detect smaller effects.

We also note that, while whole hippocampus volume was

not associated with years to parental symptom onset in the

PREVENT-AD sample, some aspects of the posterior

1880 | BRAIN 2018: 141; 1871–1883 J. W. Vogel et al.

Downloaded from https://academic.oup.com/brain/article-abstract/141/6/1871/4969934
by Serials Section Norris Medical Library user
on 23 July 2018



hippocampus were associated with years to estimated

symptom onset in the PREVENT-AD training sample

(Fig. 2). It is possible that these features were not

selected by our model due to high collinearity with other

selected features. Overall, hippocampal volume should not

be discounted as an important structural feature of

Alzheimer’s disease, but greater value should be placed

on multimodal, combinatorial biomarkers and models in

future studies.

Our study has several important limitations, the most

important being its reliance on a crude estimation of

years to estimated symptom onset. Many PREVENT-AD

participants will never develop Alzheimer’s disease demen-

tia. Their presence in the sample is likely to dilute inference

available from the work. Prediction accuracy in future stu-

dies may be improved by selecting only participants with

additional Alzheimer’s disease risk factors. In addition,

many factors, such as ageing of the population in general

(Satizabal et al., 2016), can introduce complexity into the

estimation of expected onset. Bias may also be present in

the subjective reports of parent onset age, which could be

influenced by anxiety over Alzheimer’s risk or metacogni-

tion. In addition, some important factors that may contrib-

ute to both neuroimaging metrics and onset timelines, such

as premorbid IQ, are not collected in the PREVENT-AD

battery. It is also notable that autopsy confirmation of

Alzheimer’s disease pathology was not available for the

parents of some PREVENT-AD members, or any ADNI

individuals. In this sense, we cannot be sure whether we

are predicting the onset of Alzheimer’s disease symptoms,

or the onset of another form of dementia (Ten Kate et al.,

2017). Finally, our findings in PREVENT-AD, while mainly

cross-sectional at present, could be made substantially more

informative with the addition of more extended longitu-

dinal observations. Future studies and the use of additional

cohorts would provide an opportunity to corroborate and

extend our findings, preferably with additional disease

markers.
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